Les interactions fondamentales
Quelles sont les interactions fondamentales ?
Qu'est-ce que l'interaction gravitationnelle ?
Qu'est-ce que l'interaction électromagnétique ?
Qu'est-ce que l'interaction forte ?
Qu'est-ce que l'interaction faible ?
Interaction et échange de particules
Existe-t-il une cinquième (ou sixième) force ?
Pour en savoir plus...
Retour à l'accueil


Quelles sont les interactions fondamentales ?

Tous les processus physiques, chimiques ou biologiques connus peuvent être expliqués à l'aide de seulement quatre interactions fondamentales :

La théorie qui décrit la gravitation est la relativité générale, celle qui décrit les trois autres est le modèle standard.

Néanmoins, ce dernier modèle explique les masses de tous les fermions élémentaires comme le résultat d'une nouvelle interaction, entre ces fermions et le boson BEH. Comme ce boson n'a été observé que très récemment, il est encore difficile de dire si cette nouvelle interaction existe telle qu'imaginée. Si c'était le cas, cela signifierait qu'il existe une cinquième interaction fondamentale.


Qu'est-ce que l'interaction gravitationnelle ?

L'interaction gravitationnelle est une force toujours attractive qui agit sur toute forme d'énergie, mais avec une intensité extrèmement faible (c'est l'interaction la plus faible des quatre interactions fondamentales). Ainsi, ses effets ne sont perceptibles que lorsque des objets très massifs (la masse est une forme d'énergie) sont en jeu, c'est le cas pour les objets astronomiques.

L'énorme masse des étoiles, des planètes ou des galaxies les rend donc très sensibles à la gravitation et c'est la seule interaction en jeu pour expliquer les mouvements de ces objets.

De même, l'énorme masse de la Terre (6 1024kg, soit six mille milliards de millards de tonnes !) la rend très attractive pour des objets moins massifs. Ainsi, la pesanteur et donc le poids des objets sur Terre sont le résultat de l'attraction gravitationnelle de la Terre sur ces objets. C'est pourquoi, le poids d'un objet est plus faible sur la Lune que sur Terre, puisque la masse de la Lune est plus faible que celle de la Terre.

Enfin, c'est l'attraction gravitationnelle de la Lune sur l'eau des océans (dont la masse totale est importante) qui permet d'expliquer le phénomène des marées.

Le premier à avoir compris que la pesanteur terrestre et les mouvements astronomiques étaient le résultat d'une seule et même interaction est Isaac Newton, qui publia en 1687 un livre dans lequel il a établi les lois de la gravitation. Il fallut ensuite attendre 1915 pour que Albert Einstein développe la théorie de la relativité générale, qui permet d'expliquer la gravitation par une théorie géométrique mais non quantique. La gravitation n'est donc pas du tout prise en compte par la physique des particules, mais son intensité est totalement négligeable à l'échelle des particules élémentaires.


Qu'est-ce que l'interaction électromagnétique ?

L'interaction électromagnétique est une force répulsive ou attractive qui agit sur les objets ayant une charge électrique. Deux objets de charges électriques de même signes se repoussent alors que deux objets de charges électriques de signes opposés s'attirent. Comme les atomes sont électriquement neutres, il y a peu d'effet de cette interaction à grande échelle.

L'interaction électromagnétique est bien sûr à l'origine de tous les phénomènes électriques et magnétiques.

L'interaction électromagnétique permet aussi la cohésion des atomes en liant les électrons (charge électrique négative) et le noyau des atomes (charge électrique positive). Cette même liaison permet de combiner les atomes en molécules et l'interaction électromagnétique est donc responsable des réactions chimiques. Enfin, la chimie de certaines classes de molécules permet d'expliquer la biologie.

Cette interaction peut, dans certaines conditions, créer des ondes électromagnétiques, parmi lesquelles on distingue la lumière, les ondes radio, les ondes radar, les rayons X...

En bref, l'interaction électromagnétique permet d'expliquer presque tous les phénomènes de la vie quotidienne (mis à part la pesanteur)...

La première grande étape dans la compréhension de l'électromagnétisme vient de l'unification de l'électrodynamique et du magnétisme en une seule et même interaction par J. C. Maxwell en 1860. Puis, en 1864, Maxwell comprit que la lumière était une onde électromagnétique. Enfin, en 1887, H. Hertz montre l'existence d'ondes électromagnétiques autres que la lumière.

Quelques années plus tard, la mécanique quantique se développe et la théorie de l'électromagnétisme est quantifiée, la nature quantique de cette interaction (l'existence du photon) ayant déjà été découverte par Einstein en 1905. Finalement, après la résolution de problèmes techniques, la première théorie à la fois quantique et relativiste est achevée dans les annéees 1948-49 par Tomonaga, Schwinger et Feynman, c'est l'électrodynamique quantique ou QED.

Mais, comment fonctionne QED ?


Qu'est-ce que l'interaction forte ?

L'interaction forte est une force qui agit sur les quarks et par extension sur les hadrons. Les leptons y sont totalement insensibles.

L'interaction forte permet la cohésion des noyaux atomiques en liant les protons et les neutrons entre eux au sein de ce noyau. Si cette interaction n'existait pas, les noyaux ne pourraient pas être stables et seraient dissociés sous l'effet de la répulsion électrostatique des protons entre eux.

L'interaction forte est aussi responsable des réactions nucléaires, source d'énergie des étoiles et donc du Soleil.

L'histoire des interactions fortes commence en 1911 avec la découverte du noyau atomique par Rutherford. En effet, il fallut trouver une nouvelle force pour expliquer que les noyaux atomiques ne se disloquent pas sous l'effet électrique répulsif des protons entre eux. Néanmoins, il fallut attendre 1967-70 et le développement du modèle des quarks pour que la théorie de l'interaction forte soit élaborée, c'est à dire la chromodynamique quantique ou QCD.

Mais, comment fonctionne QCD ?


Qu'est-ce que l'interaction faible ?

L'interaction faible est une force qui agit sur toutes les particules. En particulier, c'est la seule force à laquelle sont sensibles les neutrinos.

L'interaction faible est responsable de la radio-activité β qui permet les réactions nucléaires qui sont la source d'énergie du Soleil. La radio-activité naturelle est probablement aussi une source d'énergie importante pour maintenir le magma en fusion sous la croûte terrestre.

L'histoire de l'interaction faible commence bien sûr en 1896 avec la découverte de la radio-activité par Becquerel. Il faut ensuite attendre 1933 pour que E. Fermi élabore le premier modèle des interactions faibles en incorporant l'existence non encore démontrée du neutrino. Puis, en 1961, S. L. Glashow tente d'unifier l'interaction faible et l'électromagnétisme en une seule interaction électrofaible. Cette unification prédit l'existence d'une interaction faible par courant neutre qui est découverte en 1973. Elle prédit aussi l'existence de vecteurs de cette interaction, les W+, W- et Z0, qui sont à leur tour découverts en 1983.

Mais, comment agissent les W et le Z0 ?


Interaction et échange de particules

Les interactions sont expliquées en physique des particules comme l'échange entre particules de matière de particules de rayonnement.

Le dessin ci-dessous montre deux barques qui s'éloignent l'une de l'autre car leurs occupants échangent un ballon (par le principe d'action-réaction bien connu). Il y a donc interaction à distance entre les deux barques par échange d'un objet intermédiaire (le ballon). Cet objet est appelé le vecteur de l'interaction.

Ainsi, en physique des particules, on explique toute interaction entre particules par l'échange entre ces particules de vecteurs (qui sont eux-même des particules).

Echange d'une particule
Exemple d'interaction entre deux barques par l'échange d'un ballon.

On peut aussi imaginer que plus le ballon est lourd, plus il sera difficile aux occupants du bateau de le lancer loin. Ainsi, si le ballon est trop lourd, les bateaux ne pourront plus interagir au-delà d'une certaine distance.

De même, en physique des particules, plus la particule vecteur d'une interaction sera lourde, plus cette interaction sera de courte portée.


Existe-t-il une cinquième (ou sixième) force ?

Le modèle standard prédit l'existence d'une nouvelle interaction, dont le boson serait le boson BEH, afin d'expliquer l'existence de la masse. Si cette prédiction se confirmait, il s'agirait bien d'une cinquième force.

Les théoriciens ayant beaucoup d'imagination, il y a régulièrement des nouvelles théories qui prédisent une nouvelle force, qui serait donc la sixième interaction fondamentale. Néanmoins, ces théories ne résistent en général pas aux expériences mises en oeuvre pour vérifier leurs prédictions...

De même, il arrive parfois qu'une expérience observe un phénomène pouvant laisser croire à l'existence d'une nouvelle interaction. Mais, ces résultats ne sont en général pas confirmés par d'autres expériences et il s'avère souvent que le phénomène nouveau était simplement un effet non compris d'un phénomène déjà connu.

Finalement, à l'heure actuelle, tous les phénomènes connus sont explicables à l'aide des quatre (ou cinq) interactions fondamentales connues... Il n'existe donc pas de manifestation connue d'une sixième force.


Pour en savoir plus...

Si vous voulez en savoir plus sur les forces et les interactions fondamentales, vous pouvez consulter le site suivant:



© David Calvet

Dernière modification : 3 juillet 2015.